Commutators, Spectral Trace Identities, and Universal Estimates for Eigenvalues

نویسندگان

  • Michael Levitin
  • Leonid Parnovski
چکیده

Using simple commutator relations, we obtain several trace identities involving eigenvalues and eigenfunctions of an abstract self-adjoint operator acting in a Hilbert space. Applications involve abstract universal estimates for the eigenvalue gaps. As particular examples, we present simple proofs of the classical universal estimates for eigenvalues of the Dirichlet Laplacian, as well as of some known and new results for other differential operators and systems. We also suggest an extension of the methods to the case of non-self-adjoint operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace Identities for Commutators, with Applications to the Distribution of Eigenvalues

We prove trace identities for commutators of operators, which are used to derive sum rules and sharp universal bounds for the eigenvalues of periodic Schrödinger operators and Schrödinger operators on immersed manifolds. In particular, we prove bounds on the eigenvalue λN+1 in terms of the lower spectrum, bounds on ratios of means of eigenvalues, and universal monotonicity properties of eigenva...

متن کامل

On Trace Identities and Universal Eigenvalue Estimates for Some Partial Differential Operators

In this article, we prove and exploit a trace identity for the spectra of Schrr odinger operators and similar operators. This identity leads to universal bounds on the spectra, which apply to low-lying eigenvalues, eigenvalue asymptotics, and to partition functions (traces of heat operators). In many cases they are sharp in the sense that there are speciic examples for which the inequalities ar...

متن کامل

More on Five Commutator Identities

We prove that five well-known identities universally satisfied by commutators in a group generate all universal commutator identities for commutators of weight 4.

متن کامل

Universal bounds and semiclassical estimates for eigenvalues

We prove trace inequalities for a self-adjoint operator on an abstract Hilbert space. These inequalities lead to universal bounds on spectral gaps and on moments of eigenvalues {λk} that are analogous to those known for Schrödinger operators and the Dirichlet Laplacian, on which the operators of interest are modeled. In addition we produce inequalities that are new even in the model case. These...

متن کامل

Spectral Characterization of Sums of Commutators Ii

For countably generated ideals, J , of B(H), geometric stability is necessary for the canonical spectral characterization of sums of (J ; B(H)){commutators to hold. This answers a question raised by Dykema, Figiel, Weiss and Wodzicki. There are some ideals, J , having quasi{nilpotent elements that are not sums of (J ; B(H)){commutators. Also, every trace on every geometrically stable ideal is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001